• 临床检验研究论著 •

双链 DNA 测序检测白血病 Flt-3 和 PTPN11 基因突变检测的研究

李志阳1,杨素冰1,李 歆1,罗 琼2,郭 敏2

(1.广州医学院附属肿瘤医院输血科,广东广州510095;2.广东省人民医院血液科,广东广州510080)

摘 要:目的 使用双链 DNA 测序方法检测不同年龄白血病患者和不同类型白血病患者 Flt-3 和 PTPN11 基因突变特点。 方法 通过设计特异性引物,扩增出 Flt-3 和 PTPN11 高突变位点,并通过 Sanger 的酶降解测序法对扩增出片段进行测序,并与 天然序列进行比对,总结白血病 Flt-3 和 PTPN11 基因突变特点,并计算不同位点突变频率。结果 $0 \sim <18$ 岁患者中 Flt-3 和 PTPN11 突变频率明显高于 18 岁以上的患者(P < 0.05)。急、慢性淋巴细胞性白血病 Flt-3 和 PTPN11 基因突变频率明显高于 急性和慢性粒细胞性白血病(P < 0.05)。结论 Flt-3(14 号外显子、14 号内含子和 15 号外显子)和 PTPN11(3、8 和 13 号外显子)突变可能与 0-18 岁白血病患者和淋巴性白血病发生和进展相关。

关键词:白血病; 基因; 年龄

DOI: 10. 3969/j. issn. 1673-4130. 2013. 08. 017

文献标识码:A

文章编号:1673-4130(2013)08-0953-02

Double chain DNA sequencing for detection of leukemia Flt-3 and PTPN11 gene mutation detection

Li Zhiyang 1, Yang Subing 1, Li Xin 1, Luo Qiong 2, Guo min 2

(1. Department of Blood Transfusion, Guangzhou Medical College Affiliated Cancer Hospital, Guangzhou, Guangdong 510095, China; 2. Department of Hematology, Guangdong General Hospital, Guangzhou, Guangdong 510080, China)

Abstract:Objective To detect Flt-3 and PTPN11 gene mutation characteristics in different age group and different types of leukemia by double-stranded DNA sequencing method. Methods Through the design of specific primers, amplify Flt-3 and PTPN11 high mutation location, which were sequenced using the Sanger enzyme degradation sequencing, with the sequence results aligned. Flt-3 and PTPN11 gene mutation characteristics of leukemia were summarized, and the different mutation frequency were calculated. Results The Flt-3 and PTPN11 mutation frequency of 0-<18 years old patients was significantly higher than that of over 18 years old patients (P<0.05). Flt-3 and PTPN11 gene mutation frequency of acute and chronic lymphocytic leukemia was significantly higher than that of acute and chronic myelogenous leukemia (P<0.05). Conclusion Flt-3(exon 14, intron 14 and exon 15) and PTPN11 (exon 3,8 and 13) mutations may be associated with leukemia incidence and progression in 0-18 years old patients or of lymphoblastic leukemia.

Key words: leukemia; genes; age

白血病与基因突变相关[1]。有研究发现,Flt-3 主要在 14 号外显子、14 号内含子和 15 号外显子等位点,PTPN11 主要在 3、8 和 13 号外显子。本文主要是通过双链 DNA 测序用于分析不同类型白血病人群和不同年龄段患者中 Flt-3 和 PT-PN11 以上位点突变频率,从而加深对白血病 Flt-3 和 PTPN11 突变特点的认识。

1 资料与方法

- 1.1 一般资料 收集 2010 年 8 月至 2012 年 7 月在本院诊断为白血病的志愿者 342 例。 $0 \sim < 6$ 岁白血病儿童 125 例; $6 \sim < 18$ 岁白血病患者 80 例; $18 \sim < 40$ 岁以上白血病患者 98 例;40 岁以上白血病患者 39 例。急性粒细胞性白血病 82 例;急性淋巴细胞性白血病 132 例;慢性粒细胞性白血病 46 例;慢性淋巴细胞性白血病 82 例。
- 1.2 标本采集和 DNA 提取 取所有空腹状态下的患者肘关节静脉血, 收集 1 mL 于抗凝采血管中。并用 5 000 r/min 离心 20 min, 去除上清, 收集沉淀细胞。按照说明书方法抽提血细胞总的 DNA。
- 1.3 扩增和片段回收 PCR 反应体系为: 1 μL 模板, 5 μL KOD Buffer, 8 μL dNTP(80 μmol/L), 1 μL F 引物, 1 μL R 引物, 1 μL KOD 酶, 33 μL ddH₂O。 PCR 反应参数为: 95 ℃预变性 5 min, (95 ℃变性 1 min, 34 ℃退火, 68 ℃延长 2 min)循环

30 次,充分延长 7 min,最后 10 ℃冷却。胶回收并亚克隆测序。6 个菌中有 2 个或以上菌种测序结果发生了突变,则认为此白血病患者相应基因突变,若 1 个或无菌种测序结果发生突变,则认为此患者相应基因未突变。按照突变频率=基因突变例数/调查人群总数 \times 100%。

1.4 统计学处理 采用 SPSS17.0 进行统计学分析,P < 0.05表示差异有统计学意义。

2 结 果

2.1 PCR 扩增目标序列结果 见图 1。

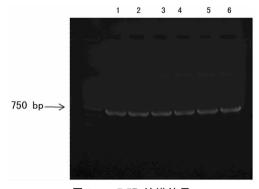


图 1 PCR 扩增结果

作者简介:李志阳,男,副主任技师,主要从事血液诊断与输血研究。

2.2 不同年龄患者 Flt-3 和 PTPN11 基因突变情况比较 见 表 1。

2.3 不同疾病类型患者 Flt-3 和 PTPN11 基因突变情况比较见表 2。

	. ta (0 / \
表 1 不同年龄患者 Flt-3 和 PTPN11 基因突变情况 b	437 [70]

年龄 -	Flt-3 基因突变			PTPN11 基因突变			
	14 号外显子突变	14 号内含子突变	15 号外显子突变	3号外显子突变	8号外显子突变	13 号外显子突变	
0~<6岁	18. 40	8. 80	10.40	7.20	12.00	11.20	
6~<18岁	18.75	8.75	7.50	13.75	15.00	8 . 75	
18~<40 岁	3.06	5. 10	6. 12	3.06	2.04	5. 10	
40 岁以上	5. 13	7.69	5. 13	2.56	5, 13	5.13	

表 2 不同疾病类型组 Flt-3 和 PRPN11 基因突变情况比较(%)

安宁米 III	Flt-3 基因突变			PTPN11		
疾病类型	14 号外显子突变	14 号内含子突变	15 号外显子突变	3号外显子突变	8号外显子突变	13 号外显子突变
急性粒细胞性白血病	10.40	4.80	4.00	5.60	4.80	4.00
急性淋巴细胞性白血病	15.00	13.75	17.50	15.00	13.75	16.25
慢性粒细胞性白血病	12.24	5.10	4.08	4.08	4.08	6.12
慢性淋巴细胞性白血病	17.95	7.69	10.26	15.38	10.26	12.82

3 讨 论

本研究 $0 \sim < 18$ 岁患者中 Flt-3 和 PTPN11 突变频率明显高于 18 岁以上的患者,P < 0.05。急性和慢性淋巴细胞性白血病 Flt-3 和 PTPN11 基因突变频率明显高于急性和慢性粒细胞性白血病,P < 0.05。从而初步可判定,Flt-3 和 PT-PN11 突变可能与 $0 \sim < 18$ 岁白血病患者和淋巴性白血病发生和进展相关。

Flt-3-和 PTPN11 为本文的研究重点[2-5]。有关白血病Flt-3 突变已经在小样本中进行了调查,且均表明Flt-3 和PTP11 与白血病相关且Flt-3 成为白血病治疗研究的重要靶点[6-7],对Flt-3 的检测成为了白血病诊断和预后的重要指标。PTP11 是可编码一种蛋白酪氨酸磷酸酶 Shp2^[8],Flt-3 突变主要在 14 号外显子、14 号内含子和 15 号外显子等位点,PT-PN11 突变主要在 3、8 和 13 号外显子[1]。但对不同年龄和类型 Flt-3 和 PTPN11 突变位点特点目前还未研究。

双链 DNA 测序技术是发展较成熟的测序方法^[9]。本研究提高对基因突变判定的准确性。除此之外,研究者确保 DNA 的纯度。此文中建立的方法值得推广应用。本研究发现不同年龄和不同类型白血病患者 Flt-3 和 PTPN11 突变位点特征不同,笔者在目前的研究基础上较难解释上述特点。虽然如此,但与上述问题相关的机制值得深入研究^[10-12]。

参考文献

- [1] 邹积艳,朱平,刘红星,等.白血病 NPM1 基因突变检测方法的临床适用性比较[J].中华检验医学杂志,2009,32(1):35-39.
- [2] 张泽川, 鹿全意, 赵江宁, 等. 双重 PCR 检测急性髓系白血病 FLT3-ITD 和 NPM1 基因突变[J]. 中国实验血液学杂志, 2011,

19(3):717-720.

- [3] 宋晓宁,杨琳,刘小军,等. 急性白血病患者 STAT5、SOCS1 和 PTPRO 基因的表达及临床意义[J]. 中国全科医学,2011,14 (27);3116-3118.
- [4] 王彤,王杰.白血病患者 Flt-3 基因突变及其与白血病发生、预后的关系[J].中国组织工程研究与临床康复,2007,11(37):7509-7512
- [5] 马燕,许小平,林果为. 骨髓增生异常综合征向急性白血病转化的相关基因研究进展[J]. 中华血液学杂志,2010,31(7):495-497.
- [6] 于琦,孟秀香,袁宏,等. 实时荧光定量 RT-PCR 检测急性白血病中 Bmi-1 基因 mRNA 的表达及意义[J]. 大连医科大学学报, 2010,32(1):90-93.
- [7] 吴弘. 关于 FLT3 与白血病的相关研究[J]. 科技与生活,2010,4 (17),104
- [8] Smith CC, Wang Q, Chin CS, et al. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia [J]. Nature, 2012, 485 (7397): 260-263.
- [9] 王杰. Flt3 基因突变与急性髓系白血病发生和预后的关系[J]. 沈阳医学院学报,2010,12(3):178-181.
- [10] Xu R, Yu Y, Zheng S, et al. Overexpression of Shp2 tyrosine phosphatase is implicated in leukemogenesis in adult human leukemia[J]. Blood, 2005, 106(9):3142-3149.
- [11] 李修荣,郑国华,顾其华,等. 双链 DNA 测序检测白血病 P53 基因 突变[J]. 中国医师杂志,2002,4(10):1138-1139.
- [12] 袁汉英,李纹. 一种简介的双链 DNA 测序法[J]. 遗传,1996,18 (6):25-26.

(收稿日期:2012-12-12)