病毒感染中的应用价值[J]. 临床血液学杂志,2020,33 (4):248-252.

[12] 汪阔,徐忠意,何家花. 外周血 NLR,PLR 和 LMR 水平分析在儿童流感病毒与疱疹性咽峡炎感染鉴别诊断中的临床意义[J]. 现代检验医学杂志,2021,36(2):136-139.

[13] HUANG W, NIU W, CHEN H, et al. Development of a

•短篇论著 •

nomogram for severe influenza in previously healthy children: a retrospective cohort study[J]. J Int Med Res, 2023,51(2):1-16.

(收稿日期:2023-08-18 修回日期:2024-01-09)

血清甲状旁腺素、胃饥饿素联合 25 羟维生素 D_3 检测对绝经后骨质疏松症的临床诊断价值 *

隆元英,陈 玲,曹小春,黄 灿,刘永胜△ 江油市人民医院检验科,四川江油 621700

摘 要:目的 探讨血清甲状旁腺素(PTH)、胃饥饿素(Ghrelin)联合 25 羟维生素 D_3 [25(OH) D_3]检测对绝经后骨质疏松症(PMOP)的临床诊断价值。方法 选取 2021 年 12 月至 2022 年 12 月该院收治的 217 例绝经后女性进行研究,根据骨密度将研究对象分为骨量正常组(72 例)、骨量减少组(52 例)和 PMOP 组(93 例)。采用 Pearson 法分析血清 PTH、Ghrelin、25(OH) D_3 表达水平与骨密度的相关性,Logistic 回归分析 PMOP 发生的影响因素,受试者工作特征(ROC)曲线分析 PTH、Ghrelin、25(OH) D_3 及三者联合对 PMOP 的诊断价值。结果 3 组年龄、绝经年龄、绝经年限及骨密度比较,差异有统计学意义(P<0.05);PMOP 组血清 PTH 表达水平高于骨量正常组及骨量减少组(P<0.05),血清 Ghrelin、25(OH) D_3 表达水平低于骨量正常组及骨量减少组(P<0.05);PMOP 患者血清 PTH 表达水平与骨密度呈负相关(r=0.857,P<0.05),血清 Ghrelin、25(OH) D_3 与骨密度均呈正相关(r=0.824、0.776,均 P<0.05);年龄、绝经年龄、绝经年限及 PTH 为发生PMOP 的危险因素(P<0.05),Ghrelin和 25(OH) D_3 为发生 PMOP 的保护因素(P<0.05);血清 PTH、Ghrelin、25(OH) D_3 诊断 PMOP 的 AUC 高于各自单独检测(P<0.05)。结论 血清 PTH、Ghrelin和 25(OH) D_3 与 PMOP 的发生密切相关,三者联合对 PMOP 具有较高诊断价值。

关键词:甲状旁腺素; 胃饥饿素; 25 羟维生素 D3; 绝经后骨质疏松症

DOI: 10. 3969/j. issn. 1673-4130. 2024. 08. 026

文章编号:1673-4130(2024)08-1021-04

中图法分类号:R580;R446.1

文献标志码:A

绝经后骨质疏松症(PMOP)是绝经后女性常见 的代谢疾病,由于女性绝经后其卵巢功能衰退,各激 素的分泌水平较以往不同,因此容易引起骨钙的流 失,增加骨质疏松的发生率,也增加了骨折发生风 险[1-2]。大多数 PMOP 患者在发生骨折而就诊时才得 以确诊,错过了最佳治疗时机,导致治疗效果及预后 状态均较差[3]。因此,寻找相关指标尽早诊断 PMOP 并给予有效治疗对患者的生命健康具有重要意义。 甲状旁腺素(PTH)是能够调节机体钙、磷代谢过程的 相关激素,有研究表明,PTH与骨细胞的合成、分解 等生理过程密切相关,是能够反映骨异常的特异性因 子[4]。胃饥饿素(Ghrelin)是主要由胃黏膜泌酸腺 X/ A 样细胞合成并分泌,能够通过激活促生长激素等的 释放来影响食欲、胃肠动力等,在人体营养平衡调节 过程中发挥重要作用[5]。近年来也有研究表明,Ghrelin 的表达也会影响骨代谢过程[6]。25-羟维生素 D₃[25(OH)D₃]是能够反映机体内维生素 D 营养状 态的指标,而维生素 D水平是影响骨质疏松发生发展的重要因素,因此 $25(OH)D_3$ 与骨质疏松的发生也具有一定相关性 [7-8]。基于此,本研究主要探讨 PMOP 患者血清 PTH、Ghrelin、 $25(OH)D_3$ 水平及三者对 PMOP 的临床诊断价值。

1 资料与方法

1.1 一般资料 选取 2021 年 12 月至 2022 年 12 月 于本院诊治的 217 例绝经后女性进行研究,收集患者的年龄、体重指数(BMI)、饮酒史、吸烟史、绝经年龄、绝经年限及骨密度等一般资料。纳入标准:(1) PMOP 组患者符合《原发性骨质疏松症诊治指南》中诊断标准,确诊为 PMOP^[9];(2) 自然绝经 1 年及以上。排除标准:(1) 伴有影响骨代谢的药物史者;(2) 伴有骨关节手术史者;(3)合并心、肝、肾等重要器官功能不全者;(4) 临床资料不完整者。所有患者及家属知情且同意参与本研究。根据骨密度检测结果获得的对应 T值,将研究对象分为骨量正常组 72 例(T

^{*} 基金项目:中华国际科学交流基金会检验检测科技专项(Z2019LSC003)。

[△] 通信作者,E-mail:420371399@qq.com。

值 $\geqslant -1.0$),骨量减少组 52 例($-2.5 \leqslant T$ 值< -1.0)和 PMOP 组 93 例(T 值< -2.5)^[9]。

- 1.2 仪器与试剂 PTH ELISA 试剂盒购自北京中杉金桥生物技术有限公司, Ghrelin ELISA 试剂盒购自法国梅里埃公司, $25(OH)D_3$ ELISA 试剂盒购自上海科顺生物科技有限公司, Lunar Prodigy 骨密度仪购自美国 GE 公司。
- 1.3 方法 血清 PTH、Ghrelin 及 25(OH) D₃ 水平检测:采集所有研究对象的空腹静脉血 5 mL,3 000 r/min 离心 10 min,收集上层血清并置于—80 ℃温度下保存,待测。血清 PTH、Ghrelin 及 25(OH) D₃ 表达水平均采用酶联免疫吸附法检测,严格按照说明书步骤进行检测。骨密度检测:采用骨密度仪检测腰椎 L骨、股骨以及全髋骨出骨密度,并获得对应 T 值。

1.4 统计学处理 采用 SPSS 25.0 软件进行数据处理。计数资料以例数(n)或百分率(%)表示,采用 χ^2 检验;计量资料以 $\overline{x} \pm s$ 表示,两组间比较行 t 检验,多组间比较行单因素方差分析,进一步两两比较行 SNK-q 检验; Pearson 法 分析 血清 PTH、Ghrelin、25(OH)D₃ 表达水平与骨密度的相关性;采用 Logistic 回归分析影响 PMOP 发生的相关因素;受试者工作特征(ROC)曲线分析 PTH、Ghrelin、25(OH)D₃ 对 PMOP 的诊断价值,曲线下面积(AUC)比较采用 Z 检验。P < 0.05 表示差异有统计学意义。

2 结 果

2.1 一般资料比较 3组年龄、绝经年龄、绝经年限及骨密度比较,差异有统计学意义 (P < 0.05)。见表 1。

\mathcal{X}_{1} \mathcal{Y}_{2} \mathcal{Y}_{3} \mathcal{Y}_{4} \mathcal{Y}_{1} \mathcal{Y}_{2} \mathcal{Y}_{3} \mathcal{Y}_{4} \mathcal{Y}_{1} \mathcal{Y}_{2} \mathcal{Y}_{3} \mathcal{Y}_{4} \mathcal{Y}_{4} \mathcal{Y}_{5} \mathcal{Y}_{5} \mathcal{Y}_{6}							
项目	骨量正常组(n=72)	骨量减少组(n=52)	PMOP组(n=93)	F/χ^2	P		
年龄(岁)	59.77±6.70	60.79 ± 7.66	62.90±8.66	3.432	0.034		
$BMI(kg/m^2)$	23.44 ± 3.66	23.17 \pm 3.21	22.35 \pm 2.80	2.576	0.078		
饮酒史	23(31.94)	21(40.38)	26(27.96)	2.362	0.307		
吸烟史	9(12.50)	6(11.54)	7(7.53)	1.249	0.536		
绝经年龄(岁)	55.21 ± 5.47	52.66 ± 4.90	51.66 ± 4.83	10.191	<0.001		
绝经年限(年)	4.37 ± 2.45	8.93 ± 3.10	11.07 ± 5.61	51.820	<0.001		
骨密度(g/cm²)							
腰椎L骨	1.03 ± 0.25	0.82 ± 0.18	0.72 ± 0.11	58.663	<0.001		
股骨	0.88 ± 0.19	0.73 ± 0.13	0.65 ± 0.09	55.503	<0.001		
全髋骨	1.22 ± 0.37	0.95 ± 0.26	0.84 ± 0.17	40.452	<0.001		

表 1 3 组一般资料比较[$\overline{x} \pm s$ 或 n(%)]

2.2 血清 PTH、Ghrelin 和 $25(OH)D_3$ 表达水平比较 PMOP 组患者血清 PTH 表达水平高于骨量正常组及骨量减少组,血清 Ghrelin、 $25(OH)D_3$ 表达水平均低于骨量正常组及骨量减少组,差异均有统计学意义(P<0.05)。见表 2。

表 2 血清 PTH、Ghrelin 和 25(OH)D₃ 表达水平 比较(T+s)

组别	n	PTH	Ghrelin	25(OH)D ₃		
		(ng/mL)	(pg/mL)	(ng/mL)		
骨量正常组	72	46.34±7.67	502.77 ± 62.90	32 . 10±6 . 18		
骨量减少组	52	50.66±9.14 ^a	456.25 ± 52.59^a	27.56 ± 4.17^a		
PMOP 组	93	54.19 ± 9.83^{ab}	418. $19 \pm 47. \ 36^{ab}$	24.82 ± 3.88^{ab}		
F		15. 445	49. 449	46. 341		
P		<0.001	<0.001	<0.001		

注:与骨量正常组比较, ^{a}P <0.05;与骨量减少组比较, ^{b}P <0.05。

2.3 血清 PTH、Ghrelin 和 $25(OH)D_3$ 表达水平与骨密度的相关性 Pearson 法分析结果显示,血清PTH 表达水平与骨密度呈负相关(r=-0.857, P<0.05),血清 Ghrelin、 $25(OH)D_3$ 表达水平与骨密度均呈 正相关(r=0.824、0.776,P<0.05)。 见

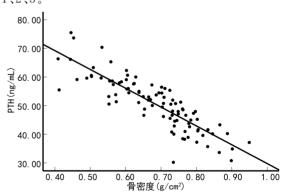


图 1 血清 PTH 表达水平与骨密度的相关性分析

2.4 多因素 Logistic 回归分析 PMOP 发生的影响因素 以是否发生 PMOP 为因变量(是=1,否=0),以年龄(\geq 60 岁=1,<60 岁=0)、绝经年龄(<52 岁=1, \geq 52 岁=0)、绝经年限(\geq 8 年=1,<8 年=0)、PTH(实测值)、Ghrelin(实测值)及 25(OH)D₃(实测值)为自变量,行 Logistic 回归分析,结果显示,年龄、绝经年龄、绝经年限及 PTH 为发生 PMOP 的危险因素(P<0.05),Ghrelin 和 25(OH)D₃ 为保护因素(P<0.05)。见表 3。

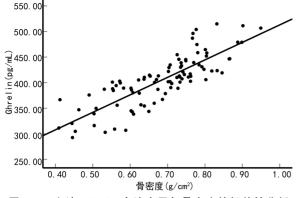


图 2 血清 Ghrelin 表达水平与骨密度的相关性分析

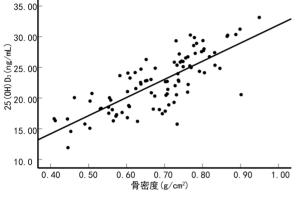


图 3 血清 25(OH)D₃ 表达水平与骨密度的相关性 分析

2.5 血清 PTH、Ghrelin 和 25(OH)D₃ 对 PMOP 的 诊断价值 ROC 曲线分析结果显示,血清 PTH、Ghrelin 和 25(OH)D₃ 诊断 PMOP 的 AUC 分别为

0.620、0.751、0.784,三者联合检测的 AUC 为 0.857,三者联合检测优于血清 PTH、Ghrelin 和 $25(\mathrm{OH})\mathrm{D_3}$ 各自单独检测($Z_{\mathrm{E}_{4}\mathrm{K}_{6}/\mathrm{PTH}}=4.886$, P<0.001; $Z_{\mathrm{E}_{4}\mathrm{K}_{6}/\mathrm{Ghrelin}}=2.944$,P=0.003; $Z_{\mathrm{E}_{4}\mathrm{K}_{6}/\mathrm{E}_{5}(\mathrm{OH})\mathrm{D_{3}}}=2.187$,P=0.006)。见图 4 和表 4。

表 3 多因素 Logistic 回归分析 PMOP 发生的影响因素

影响因素	β	SE	Wald	P	OR	95%CI
年龄	0.533	0.216	6.089	0.014	1.704	1.116~2.602
绝经年龄	0.635	0.209	9. 231	0.002	1.887	1.253~2.842
绝经年限	0.509	0.256	3. 947	0.047	1.663	1.007~2.747
PTH	0.553	0.222	6. 199	0.013	1.738	1.125~2.685
Ghrelin	-0 . 397	0.197	4.071	0.044	0.672	0.457~0.989
25(OH)D ₃	-0 . 631	0.192	10.805	0.001	0.532	0.365~0.775

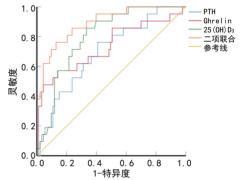


图 4 血清 PTH、Ghrelin 和 25(OH)D₃ 诊断 PMOP 的 ROC 曲线

表 4 血清 PTH、Ghrelin 和 25(OH)D₃ 对 PMOP 的诊断价值

变量	AUC	cut-off 值	95%CI	灵敏度(%)	特异度(%)	约登指数
PTH	0.620	52.03 ng/mL	0.536~0.699	78.85	40.86	0.197
Ghrelin	0.751	436.89 pg/mL	0.672~0.819	67.31	77.42	0.447
$25(OH)D_3$	0.784	26.10 ng/mL	0.708~0.848	67.31	78.49	0.458
三者联合	0.857	_	0.789~0.909	63.46	90.32	0.537

注:一表示此项无数据。

3 讨 论

PMOP 是常发生于绝经后女性的一种代谢性疾病,PMOP 的发生会导致患者骨组织微结构破坏,引起骨量减少、强度降低,骨脆性增加等症状,进而增加发生骨折的风险^[10-11]。近年来随着我国老龄化程度的加深,PMOP 的发病率也呈逐年上升趋势,占所有骨质疏松人群的 80%,对患者、家庭及社会造成了严重负担^[12]。PMOP 的发病机制复杂,患者雌激素水平波动、相关细胞因子表达异常、生活习惯及环境的变化均与之相关^[13]。

PTH 是调节钙、磷代谢及骨转换过程的相关激素,与骨骼的合成、代谢等过程密切相关,能够起到调节骨形成的作用^[14-15]。本研究中,PMOP 组血清PTH表达水平高于骨量正常组及骨量减少组(*P*<

0.05),王文娟等^[16]也指出 PTH 是血液透析患者发生骨质疏松的危险因素,这与本研究结果一致。对血清 PTH 表达水平与骨密度的相关性分析结果显示,二者呈负相关(r=-0.857,P<0.05),谢树永等^[4]的研究结果也显示,绝经后骨质疏松症患者骨密度值与甲状旁腺素具有一定的相关性,以上研究结果均表明血清 PTH 水平的升高会降低骨密度、诱发骨软化,进而导致骨质疏松的发生^[17]。

Ghrelin 是一种由氨基酸组成的多肽物质,与生长激素的释放有关,还能够促进脂肪的形成与消化、胃酸分泌与胃肠道蠕动等过程^[18],郑坤杰等^[6]也表示,Ghrelin 会影响成骨细胞的增殖与分化过程,可能与骨质疏松症的发生发展有关。本研究结果显示,PMOP组血清 Ghrelin 水平低于骨量正常组及骨量

减少组(P<0.05),且与骨密度呈正相关(r=0.824,P<0.05),王枚等^[19]的研究结果也显示,骨质疏松患者血清 Ghrelin 呈低水平,与骨密度呈正相关,这与本研究结果结果一致。以上结果均提示,血清 Ghrelin水平与 PMOP 的发生密切相关,可能作为诊断 PMOP 的特异性指标。

25(OH)D。是维生素 D与 25 羟化酶结合而产生 的一种活性代谢物,能够起到调节钙、磷代谢的作用, 进而维持骨骼系统钙平衡[20-21]。基于此,本研究检测 分析 PMOP 患者血清 25(OH)D。水平,结果显示, PMOP组血清25(OH)D。水平低于骨量正常组及骨 量减少组(P < 0.05),且与骨密度呈正相关(r =0.776,P<0.05),这主要是由于当 25(OH)D₃ 水平 下降会导致骨质中硫酸盐及碳酸盐沉积减少,此状态 会使骨质流失,骨密度降低,进而会引发骨质疏松[22]。 进一步对影响 PMOP 发生的相关因素进行分析,结 果显示,年龄、绝经年龄、绝经年限及 PTH 为发生 PMOP 的危险因素 (P < 0.05), Ghrelin 和 25(OH)D₃ 为保护因素(P<0.05)。这主要是由于绝 经年龄较晚者雌激素水平较稳定,能够预防或延缓骨 质疏松症的发生,而绝经年限较长则骨丢失量越大, 因此易引发 PMOP。ROC 曲线分析结果显示,三者 联合检测优于血清 PTH、Ghrelin 和 25(OH)D。各自 单独检测,提示三者对 PMOP 具有较高的诊断价值。

综上所述,血清 PTH、Ghrelin 和 $25(OH)D_3$ 表达水平与 PMOP 的发生密切相关,三者联合对 PMOP 具有较高的诊断价值,但 PTH、Ghrelin 和 $25(OH)D_3$ 对 PMOP 的具体影响机制还需进行深入探究。

参考文献

- [1] JOHNSTON C B, DGARA M. Osteoporosis in older adults[J]. Med Clin North Am, 2020, 104(5):873-884.
- [2] LI J, CHEN X, LU L, et al. The relationship between bone marrow adipose tissue and bone metabolism in postmenopausal osteoporosis[J]. Cytokine Growth Factor Rev, 2020, 52(1):88-98.
- [3] 甘坤宁,张波,贺辉,等.绝经后骨折患者血清骨碱性磷酸酶、I型前胶原和骨形态发生蛋白2水平与骨质疏松程度的相关性[J].疑难病杂志,2022,21(8):845-849.
- [4] 谢树永,姚新明,康京京. 绝经后骨质疏松症患者血清甲 状旁腺素和 25 羟维生素 D 及骨代谢标志物与骨密度的 相关性[J]. 河北医学,2021,27(12):1979-1983.
- [5] LU X, HUANG L, HUANG Z, et al. LEAP-2; an emerging endogenous ghrelin receptor antagonist in the pathophysiology of obesity[J]. Front Endocrinol (Lausanne), 2021,12(1);1-11.
- [6] 郑坤杰,刘晴晴,耿建林,等.血清胃饥饿素水平与绝经后骨质疏松症合并代谢综合征患者骨密度相关性研究[J].中国骨质疏松杂志,2021,27(3):401-404.
- [7] SOSA H M, GÓMEZDE T, ROMERO M J. Cholecalciferol or calcifediol in the management of Vitamin D defi-

- ciency[J]. Nutrients, 2020, 12(6): 1617-1618.
- [8] GOSWAMI R, NAIR A. Diabetes mellitus, vitamin D and osteoporosis; insights [J]. Indian J Med Res, 2019, 150 (5):425-428.
- [9] 中华医学会骨质疏松和骨矿盐疾病分会. 原发性骨质疏松症诊疗指南[J]. 中国骨质疏松杂志, 2019, 25(3): 281-309.
- [10] DONG Q, HAN Z, TIAN L. Identification of serum exosome-derived circRNA-miRNA-TF-mRNA regulatory network in postmenopausal osteoporosis using bioinformatics analysis and validation in peripheral blood-derived mononuclear cells [J]. Front Endocrinol (Lausanne), 2022, 13:899503.
- [11] 钟瑶,沈想想,边平达,等. 绝经后骨质疏松症患者接受唑来膦酸治疗后骨密度变化与骨转换标志物关系的研究 [J]. 中国医药,2022,17(11):1681-1684.
- [12] ZHAO F, XU Y, OUYANG Y, et al. Silencing of miR-483-5p alleviates postmenopausal osteoporosis by targeting SATB2 and PI3K/AKT pathway[J]. Aging (Albany NY), 2021, 13(5):6945-6956.
- [13] 熊梦欣,向楠,薛瑶珺,等.基于"肾痰"认识骨-脂代谢异常失衡在绝经后骨质疏松症发病中的作用[J].中国骨质疏松杂志,2022,28(3);455-459.
- [14] 姚华龙. PTH、CRP、OPG/PYR 比值在老年骨质疏松症中的临床意义[J]. 检验医学,2022,37(12):1146-1150.
- [15] ROIZEN J D, LI D, OLEAR L, et al. CYP3A4 mutation causes vitamin dependent rickets type 3[J]. J Clin Invest, 2018,128(5):1913-1918.
- [16] 王文娟, 蒋霞. 不同运动方式对维持性血液透析患者骨密度的影响[J]. 中国骨质疏松杂志, 2021, 27(8): 1183-1186
- [17] 边平达,李建英,吴惠英,等. 维生素 D2 注射液对维生素 D 缺乏高龄男性患者血清甲状旁腺激素的影响[J]. 中国新药与临床杂志,2021,40(7):520-523.
- [18] SAKATA I, TAKEMI S. Ghrelin-cell physiology and role in the gastrointestinal tract[J]. Curr Opin Endocrinol Diabetes Obes, 2021, 28(2):238-242.
- [19] 王枚,张玲,张蕾.老年高血压血清脂肪因子胃饥饿素摄食抑制因子-1变化与骨质疏松症的关系[J].安徽医学,2020,41(3):310-313.
- [20] KAZEMIAN E, POURALI A, SEDAGHAT F, et al. Effect of supplemental vitamin D₃ on bone mineral density:a systematic review and meta-analysis[J]. Nutr Rev, 2023,81(5):511-530.
- [21] 王翠翠,谢坤霞,王宽峰,磷酸盐合剂联合维生素 D_3 对营养性佝偻病患儿血清 25-羟维生素 D 粒细胞集落刺激因子及肿瘤坏死因子 α 水平的影响[J].中国妇幼保健, 2021,36(5):1053-1056.
- [22] 周颖昊, 孟醒. 长骨骨折患者血清全段甲状旁腺激素联合 25 羟维生素 D_3 诊断骨质疏松的价值[J]. 检验医学与临床, 2021, 18(23): 3416-3419.

(收稿日期:2023-08-16 修回日期:2024-01-09)